Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis

نویسندگان

  • Myoun-Su Kim
  • Wan-Je Cho
  • Myoung Chong Song
  • Seong-Whan Park
  • Kaeun Kim
  • Eunji Kim
  • Naryeong Lee
  • Sang-Jip Nam
  • Ki-Hoon Oh
  • Yeo Joon Yoon
چکیده

BACKGROUND Milbemycins, produced from Streptomyces hygroscopicus subsp. aureolacrimosus and Streptomyces bingchenggensis, are 16-membered macrolides that share structural similarity with avermectin produced from Streptomyces avermitilis. Milbemycins possess strong acaricidal, insecticidal, and anthelmintic activities but low toxicity. Due to the high commercial value of the milbemycins and increasing resistance to the avermectins and their derivatives, it is imperative to develop an efficient combinatorial biosynthesis system exploiting an overproduction host strain to produce the milbemycins and novel analogs in large quantities. RESULTS The respective replacement of AveA1 and AveA3 (or module 7 in AveA3) of the avermectin polyketide synthase (PKS) in the avermectin high-producing strain S. avermitilis SA-01 with MilA1 and MilA3 (or module 7 in MilA3) of the milbemycin PKS resulted in the production of milbemycins A3, A4, and D in small amounts and their respective C5-O-methylated congener milbemycins B2, B3, and G as major products with total titers of approximately 292 mg/l. Subsequent inactivation of the C5-O-methyltransferase AveD led to a production of milbemycins A3/A4 (the main components of the commercial product milbemectin) in approximately 225 and 377 mg/l in the flask and 5 l fermenter culture, respectively, along with trace amounts of milbemycin D. CONCLUSIONS We demonstrated that milbemycin biosynthesis can be engineered in the avermectin-producing S. avermitilis by combinatorial biosynthesis with only a slight decrease in its production level. Application of a similar strategy utilizing higher producing industrial strains will provide a more efficient combinatorial biosynthesis system based on S. avermitilis for further enhanced production of the milbemycins and their novel analogs with improved insecticidal potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designed biosynthesis of 25-methyl and 25-ethyl ivermectin with enhanced insecticidal activity by domain swap of avermectin polyketide synthase

BACKGROUND Avermectin and milbemycin are important 16-membered macrolides that have been widely used as pesticides in agriculture. However, the wide use of these pesticides inevitably causes serious drug resistance, it is therefore imperative to develop new avermectin and milbemycin analogs. The biosynthetic gene clusters of avermectin and milbemycin have been identified and the biosynthetic pa...

متن کامل

Isolation, Characterization and Selection of Avermectin-Producing Streptomyces avermitilis Strains From Soil Samples

BACKGROUND Streptomyces avermitilis, belonging to Actinomycetes, is specialized for production of avermectin, used as an anthelmintic and insecticidal agent. It is mostly found in soil and its isolation is very crucial for medically important avermectin production. OBJECTIVES In the present study, 10 bacterial isolates lacking antimicrobial activities were isolated from the soil samples colle...

متن کامل

Significance of Heavy-Ion Beam Irradiation-Induced Avermectin B1a Production by Engineered Streptomyces avermitilis

Heavy-ion irradiation technology has advantages over traditional methods of mutagenesis. Heavy-ion irradiation improves the mutation rate, broadens the mutation spectrum, and shortens the breeding cycle. However, few data are currently available regarding its effect on Streptomyces avermitilis morphology and productivity. In this study, the influence of heavy-ion irradiation on S. avermitilis w...

متن کامل

Production and Screening of High Yield Avermectin B1b Mutant of Streptomyces avermitilis 41445 Through Mutagenesis

BACKGROUND Secondary metabolite production from wild strains is very low for economical purpose therefore certain strain improvement strategies are required to achieve hundred times greater yield of metabolites. Most important strain improvement techniques include physical and chemical mutagenesis. Broad spectrum mutagenesis through UV irradiation is the most important and convenient physical m...

متن کامل

A Novel TetR Family Transcriptional Regulator, SAV576, Negatively Controls Avermectin Biosynthesis in Streptomyces avermitilis

Avermectins produced by Streptomyces avermitilis are potent anti-parasitic agents that are useful in animal health care, agriculture, and the treatment of human infections. In a search for novel regulators that affect avermectin biosynthesis, comparative transcriptome analysis was performed between wild-type strain ATCC31267 and avermectin overproducing strain 76-02-e, revealing some differenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017